A Proof System for the Modal μ-calculus
نویسنده
چکیده
منابع مشابه
A Compositional Proof System for the Modal mu-Calculus
We present a proof system for determining satisfaction between processes in a fairly general process algebra and assertions of the modal μ-calculus. The proof system is compositional in the structure of processes. It extends earlier work on compositional reasoning within the modal μ-calculus and combines it with techniques from work on local model checking. The proof system is sound for all pro...
متن کاملA Natural Deduction style proof system for propositional μ-calculus and its formalization in inductive type theories
In this paper, we present a formalization of Kozen’s propositional modal μ-calculus, in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (“proof”) rules and of context sensitive grammars. The encoding can be used in the Coq system, providi...
متن کاملOn the Formalization of the Modal µ-Calculus in the Calculus of Inductive Constructions
We present a Natural Deduction proof system for the propositional modal μ-calculus, and its formalization in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the formalization of modal (sequent-style) rules and of context sensitive grammars. The formalization c...
متن کاملFormalizing a Lazy Substitution Proof System for µ-calculus in the Calculus of Inductive Constructions
We present a Natural Deduction proof system for the propositional modal μ-calculus, and its formalization in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (sequent-style) rules and of context sensitive grammars. The formalization can be...
متن کاملA Natural Deduction style proof system for propositional $\mu$-calculus and its formalization in inductive type theories
In this paper, we present a formalization of Kozen’s propositional modal μ-calculus, in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (“proof”) rules and of context sensitive grammars. The encoding can be used in the Coq system, providi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006