A Proof System for the Modal μ-calculus

نویسنده

  • Oliver Friedmann
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Compositional Proof System for the Modal mu-Calculus

We present a proof system for determining satisfaction between processes in a fairly general process algebra and assertions of the modal μ-calculus. The proof system is compositional in the structure of processes. It extends earlier work on compositional reasoning within the modal μ-calculus and combines it with techniques from work on local model checking. The proof system is sound for all pro...

متن کامل

A Natural Deduction style proof system for propositional μ-calculus and its formalization in inductive type theories

In this paper, we present a formalization of Kozen’s propositional modal μ-calculus, in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (“proof”) rules and of context sensitive grammars. The encoding can be used in the Coq system, providi...

متن کامل

On the Formalization of the Modal µ-Calculus in the Calculus of Inductive Constructions

We present a Natural Deduction proof system for the propositional modal μ-calculus, and its formalization in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the formalization of modal (sequent-style) rules and of context sensitive grammars. The formalization c...

متن کامل

Formalizing a Lazy Substitution Proof System for µ-calculus in the Calculus of Inductive Constructions

We present a Natural Deduction proof system for the propositional modal μ-calculus, and its formalization in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (sequent-style) rules and of context sensitive grammars. The formalization can be...

متن کامل

A Natural Deduction style proof system for propositional $\mu$-calculus and its formalization in inductive type theories

In this paper, we present a formalization of Kozen’s propositional modal μ-calculus, in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (“proof”) rules and of context sensitive grammars. The encoding can be used in the Coq system, providi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006